Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Investig Health Psychol Educ ; 14(3): 657-668, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534904

RESUMO

(1) Background: As the field of artificial intelligence (AI) evolves, tools like ChatGPT are increasingly integrated into various domains of medicine, including medical education and research. Given the critical nature of medicine, it is of paramount importance that AI tools offer a high degree of reliability in the information they provide. (2) Methods: A total of n = 450 medical examination questions were manually entered into ChatGPT thrice, each for ChatGPT 3.5 and ChatGPT 4. The responses were collected, and their accuracy and consistency were statistically analyzed throughout the series of entries. (3) Results: ChatGPT 4 displayed a statistically significantly improved accuracy with 85.7% compared to that of 57.7% of ChatGPT 3.5 (p < 0.001). Furthermore, ChatGPT 4 was more consistent, correctly answering 77.8% across all rounds, a significant increase from the 44.9% observed from ChatGPT 3.5 (p < 0.001). (4) Conclusions: The findings underscore the increased accuracy and dependability of ChatGPT 4 in the context of medical education and potential clinical decision making. Nonetheless, the research emphasizes the indispensable nature of human-delivered healthcare and the vital role of continuous assessment in leveraging AI in medicine.

2.
Pharmacol Res ; 201: 107107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354869

RESUMO

In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.


Assuntos
Anti-Infecciosos , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico
3.
Adv Sci (Weinh) ; 11(14): e2305998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298098

RESUMO

Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Neoplasias/metabolismo
4.
Curr Oncol Rep ; 26(3): 272-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376625

RESUMO

PURPOSE OF REVIEW: This review aims to provide a comprehensive overview of mesenchymal sinonasal tract tumors (STTs), a distinct subset of STTs. Despite their rarity, mesenchymal STTs represent a unique clinical challenge, characterized by their rarity, often slow progression, and frequently subtle or overlooked symptoms. The complex anatomy of the sinonasal area, which includes critical structures such as the orbit, brain, and cranial nerves, further complicates surgical treatment options. This underscores an urgent need for more advanced and specialized therapeutic approaches. RECENT FINDINGS: Advancements in molecular diagnostics, particularly in next-generation sequencing, have significantly enhanced our understanding of STTs. Consequently, the World Health Organization has updated its tumor classification to better reflect the distinct histological and molecular profiles of these tumors, as well as to categorize mesenchymal STTs with greater accuracy. The growing understanding of the molecular characteristics of mesenchymal STTs opens new possibilities for targeted therapeutic interventions, marking a significant shift in treatment paradigms. This review article concentrates on mesenchymal STTs, specifically addressing sinonasal tract angiofibroma, sinonasal glomangiopericytoma, biphenotypic sinonasal sarcoma, and skull base chordoma. These entities are marked by unique histopathological and molecular features, which challenge conventional treatment approaches and simultaneously open avenues for novel targeted therapies. Our discussion is geared towards delineating the molecular underpinnings of mesenchymal STTs, with the objective of enhancing therapeutic strategies and addressing the existing shortcomings in the management of these intricate tumors.


Assuntos
Neoplasias dos Seios Paranasais , Seios Paranasais , Sarcoma , Humanos , Seios Paranasais/patologia , Neoplasias dos Seios Paranasais/tratamento farmacológico , Neoplasias dos Seios Paranasais/patologia , Sarcoma/patologia
5.
Biomedicines ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137456

RESUMO

The presence of circulating Hsp70 levels and their influence on the immunophenotype of circulating lymphocyte subsets were examined as diagnostic/prognostic biomarkers for the overall survival (OS) in patients with IDH-mutant WHO grade 3 oligodendroglioma, astrocytoma, and IDH-wildtype grade 4 glioblastoma (GBM). Vesicular and free Hsp70 in the plasma/serum was measured using the Hsp70-exo and R&D Systems DuoSet® Hsp70 ELISAs. The immunophenotype and membrane Hsp70 status was determined by multiparameter flow cytometry on peripheral blood lymphocytes and single-cell suspensions of tumor specimens and cultured cells. Compared to healthy controls, circulating vesicular Hsp70 levels were significantly increased in patients with GBM, concomitant with a significant decrease in the proportion of CD3+/CD4+ helper T cells, whereas the frequency of NK cells was most prominently increased in patients with grade 3 gliomas. Elevated circulating Hsp70 levels and a higher prevalence of activated CD3-/CD56+/CD94+/CD69+ NK cells were associated with an improved OS in grade 3 gliomas, whereas high Hsp70 levels and low CD3+/CD4+ frequencies were associated with an adverse OS in GBM. It is assumed that a reduced membrane Hsp70 density on grade 4 versus grade 3 primary glioma cells and reduced CD3+/CD4+ T cell counts in GBM might drive an immunosuppressive tumor microenvironment.

6.
Biomed Pharmacother ; 167: 115467, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696087

RESUMO

1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.

7.
Exp Gerontol ; 175: 112142, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921675

RESUMO

Blood donor age has become a major concern due to the age-associated variations in the content and concentration of circulating extracellular nano-sized vesicles (EVs), including exosomes. These EVs mirror the state of their parental cells and transfer it to the recipient cells via biological messengers such as microRNAs (miRNAs, miRs). Since the behavior of hematopoietic stem cells (HSCs) is potentially affected by the miRs of plasma-derived EVs, a better understanding of the content of EVs is important for the safety and efficacy perspectives in blood transfusion medicine. Herein, we investigated whether the plasma-derived EVs of young (18-25 years) and elderly human donors (45-60 years) can deliver "youth" or "aging" signals into human umbilical cord blood (hUCB)-derived HSCs in vitro. The results showed that EVs altered the growth functionality and differentiation of HSCs depending on the age of the donor from which they are derived. EVs of young donors could ameliorate the proliferation and self-renewal potential of HSCs whereas those of aged donors induced senescence-associated differentiation in the target cells, particularly toward the myeloid lineage. These findings were confirmed by flow cytometric analysis of surface markers and microarray profiling of genes related to stemness (e.g., SOX-1, Nanog) and differentiation (e.g., PU-1). The results displayed an up-regulation of miR-29 and miR-96 and a down-regulation of miR-146 in EVs derived from elderly donors. The higher expression of miR-29 and miR-96 contributed to the diminished expression of CDK-6 and CDKN1A (p21), promoting senescence fate via cell growth suppression, while the lower expression of miR-146 positively regulates TRAF-6 expression to accelerate biological aging. Our findings reveal that plasma-derived EVs from young donors can reverse the aging-associated changes in HSCs, while vice versa, the EVs from elderly donors rather promote the senescence process.


Assuntos
Vesículas Extracelulares , MicroRNAs , Idoso , Humanos , Rejuvenescimento , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas
8.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831510

RESUMO

Triple-negative breast cancer (TNBC) a highly aggressive tumor entity with an unfavorable prognosis, is treated by multimodal therapies, including ionizing radiation (IR). Radiation-resistant tumor cells, as well as induced normal tissue toxicity, contribute to the poor clinical outcome of the disease. In this study, we investigated the potential of novel hybrid iron oxide (Fe3O4)-gold (Au) nanoparticles (FeAuNPs) functionalized with the heat shock protein 70 (Hsp70) tumor-penetrating peptide (TPP) and coupled via a PEG4 linker (TPP-PEG4-FeAuNPs) to improve tumor targeting and uptake of NPs and to break radioresistance in TNBC cell lines 4T1 and MDA-MB-231. Hsp70 is overexpressed in the cytosol and abundantly presented on the cell membrane (mHsp70) of highly aggressive tumor cells, including TNBCs, but not on corresponding normal cells, thus providing a tumor-specific target. The Fe3O4 core of the NPs can serve as a contrast agent enabling magnetic resonance imaging (MRI) of the tumor, and the nanogold shell radiosensitizes tumor cells by the release of secondary electrons (Auger electrons) upon X-ray irradiation. We demonstrated that the accumulation of TPP-PEG4-FeAuNPs into mHsp70-positive TNBC cells was superior to that of non-conjugated FeAuNPs and FeAuNPs functionalized with a non-specific, scrambled peptide (NGL). After a 24 h co-incubation period of 4T1 and MDA-MB-231 cells with TPP-PEG4-FeAuNPs, but not with control hybrid NPs, ionizing irradiation (IR) causes a cell cycle arrest at G2/M and induces DNA double-strand breaks, thus triggering apoptotic cell death. Since the radiosensitizing effect was completely abolished in the presence of the ROS inhibitor N-acetyl-L-cysteine (NAC), we assume that the TPP-PEG4-FeAuNP-induced apoptosis is mediated via an increased production of ROS.

9.
Cell Stress Chaperones ; 28(1): 105-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399258

RESUMO

Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Gatos , Animais , Suínos , Proteínas de Choque Térmico HSP70 , Biomarcadores Tumorais , Ensaio de Imunoadsorção Enzimática , Mamíferos
10.
Cancers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428793

RESUMO

Non-small cell lung cancer (NSCLC) is the second most frequently diagnosed tumor worldwide. Despite the clinical progress which has been achieved by multimodal therapies, including radiochemotherapy, and immune checkpoint inhibitor blockade, the overall survival of patients with advanced-stage NSCLC remains poor, with less than 16 months. It is well established that many aggressive tumor entities, including NSCLC, overexpress the major stress-inducible heat shock protein 70 (Hsp70) in the cytosol, present it on the plasma membrane in a tumor-specific manner, and release Hsp70 into circulation. Although high Hsp70 levels are associated with tumor aggressiveness and therapy resistance, membrane-bound Hsp70 can serve as a tumor-specific antigen for Hsp70-primed natural killer (NK) cells, expressing the C-type lectin receptor CD94, which is part of the activator receptor complex CD94/NKG2C. Therefore, we investigated circulating Hsp70 levels and changes in the composition of peripheral blood lymphocyte subsets as potential biomarkers for the advanced Union for International Cancer Control (UICC) stages in NSCLC. As expected, circulating Hsp70 levels were significantly higher in NSCLC patients compared to the healthy controls, as well as in patients with advanced UICC stages compared to those in UICC stage I. Smoking status did not influence the circulating Hsp70 levels significantly. Concomitantly, the proportions of CD4+ T helper cells were lower compared to the healthy controls and stage I tumor patients, whereas that of CD8+ cytotoxic T cells was progressively higher. The prevalence of CD3-/CD56+, CD3-/NKp30, CD3-/NKp46+, and CD3-/NKG2D+ NK cells was higher in stage IV/IIIB of the disease than in stage IIIA but were not statistically different from that in healthy individuals. However, the proportion of NK cells expressing CD94 and the activation/exhaustion marker CD69 significantly increased in higher tumor stages compared with stage I and the healthy controls. We speculate that although elevated circulating Hsp70 levels might promote the prevalence of CD94+ NK cells in patients with advanced-stage NSCLC, the cytolytic activity of these NK cells also failed to control tumor growth due to insufficient support by pro-inflammatory cytokines from CD4+ T helper cells. This hypothesis is supported by a comparative multiplex cytokine analysis of the blood in lung cancer patients with a low proportion of CD4+ T cells, a high proportion of NK cells, and high Hsp70 levels versus patients with a high proportion of CD4+ T cells exhibiting lower IL-2, IL-4, IL-6, IFN-γ, granzyme B levels.

11.
Front Immunol ; 13: 883694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720311

RESUMO

Strategies to boost anti-tumor immunity are urgently needed to treat therapy-resistant late-stage cancers, including colorectal cancers (CRCs). Cytokine stimulation and genetic modifications with chimeric antigen receptors (CAR) represent promising strategies to more specifically redirect anti-tumor activities of effector cells like natural killer (NK) and T cells. However, these approaches are critically dependent on tumor-specific antigens while circumventing the suppressive power of the solid tumor microenvironment and avoiding off-tumor toxicities. Previously, we have shown that the stress-inducible heat shock protein 70 (Hsp70) is frequently and specifically expressed on the cell surface of many different, highly aggressive tumors but not normal tissues. We could take advantage of tumors expressing Hsp70 on their membrane ('mHsp70') to attract and engage NK cells after in vitro stimulation with the 14-mer Hsp70 peptide TKDNNLLGRFELSG (TKD) plus low dose interleukin (IL)-2. However, a potential limitation of activated primary NK cells after adoptive transfer is their comparably short life span. T cells are typically long-lived but do not recognize mHsp70 on tumor cells, even after stimulation with TKD/IL-2. To combine the advantages of mHsp70-specificity with longevity, we constructed a CAR having specificity for mHsp70 and retrovirally transduced it into primary T cells. Co-culture of anti-Hsp70 CAR-transduced T cells with mHsp70-positive tumor cells stimulates their functional responsiveness. Herein, we demonstrated that human CRCs with a high mHsp70 expression similarly attract TKD/IL-2 stimulated NK cells and anti-Hsp70 CAR T cells, triggering the release of their lytic effector protein granzyme B (GrB) and the pro-inflammatory cytokine interferon (IFN)-γ, after 4 and 24 hours, respectively. In sum, stimulated NK cells and anti-Hsp70 CAR T cells demonstrated comparable anti-tumor effects, albeit with somewhat differing kinetics. These findings, together with the fact that mHsp70 is expressed on a large variety of different cancer entities, highlight the potential of TKD/IL-2 pre-stimulated NK, as well as anti-Hsp70 CAR T cells to provide a promising direction in the field of targeted, cell-based immunotherapies which can address significant unmet clinical needs in a wide range of cancer settings.


Assuntos
Interleucina-2 , Neoplasias , Proteínas de Choque Térmico HSP70 , Humanos , Interleucina-2/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/metabolismo , Microambiente Tumoral
12.
Hematol., Transfus. Cell Ther. (Impr.) ; 44(2): 197-205, Apr.-June 2022. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1385056

RESUMO

Abstract Introduction The isolation of captured peripheral blood mononuclear cells (PBMNCs) from leukoreduction filters (LRFs) can be of great importance in terms of bringing the lost cells back into use. Objective The aim of this study was to evaluate various methods based on their potential to recover the peripheral blood cells from LRFs with a focus on mononuclear cells (MNCs). Method For cell isolation from LRFs, three distinct methods (back-flushing, direct and vacuum pump) were compared through the calculation of the yield of isolated MNCs. The viability of extracted cells was determined by the flow cytometry technique. Moreover, the recovered MNCs were characterized regarding the presence of blood stem cell purification. The cell culture, microscopic observation, and immunophenotyping were employed to characterize the blood stem cells (hematopoietic, mesenchymal and progenitor endothelial stem cells). Results The yield of isolation obtained in the back-flushing, direct and vacuum pump methods were 17.7 ± 1.28, 17.3 ± 0.96 and 21.2 ± 0.90 percent, respectively. Although the highest potential for total blood cell recovery belonged to the vacuum pump method, the lowest cell viability (85.73 ± 4.84%) was observed in this method. However, the isolation process of the back-flushing and direct methods had less effect on cell viability. The characterization of the isolated MNCs displayed that the dominant positive phenotype was for CD34/CD45, indicating hematopoietic stem cells. In addition, the endothelial stem/progenitor cells were significantly detected as CD31/CD133 positive cells. Conclusion According to our results and considering the safety and efficiency potential of each of the applied methods, the back-flushing in comparison with the other methods can be considered a suitable procedure for MNC isolation from LRFs.


Assuntos
Leucócitos Mononucleares , Separação Celular , Células-Tronco de Sangue Periférico , Contagem de Células Sanguíneas , Citometria de Fluxo
13.
Hematol Transfus Cell Ther ; 44(2): 197-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33423981

RESUMO

INTRODUCTION: The isolation of captured peripheral blood mononuclear cells (PBMNCs) from leukoreduction filters (LRFs) can be of great importance in terms of bringing the lost cells back into use. OBJECTIVE: The aim of this study was to evaluate various methods based on their potential to recover the peripheral blood cells from LRFs with a focus on mononuclear cells (MNCs). METHOD: For cell isolation from LRFs, three distinct methods (back-flushing, direct and vacuum pump) were compared through the calculation of the yield of isolated MNCs. The viability of extracted cells was determined by the flow cytometry technique. Moreover, the recovered MNCs were characterized regarding the presence of blood stem cell purification. The cell culture, microscopic observation, and immunophenotyping were employed to characterize the blood stem cells (hematopoietic, mesenchymal and progenitor endothelial stem cells). RESULTS: The yield of isolation obtained in the back-flushing, direct and vacuum pump methods were 17.7 ±â€¯1.28, 17.3 ±â€¯0.96 and 21.2 ±â€¯0.90 percent, respectively. Although the highest potential for total blood cell recovery belonged to the vacuum pump method, the lowest cell viability (85.73 ±â€¯4.84%) was observed in this method. However, the isolation process of the back-flushing and direct methods had less effect on cell viability. The characterization of the isolated MNCs displayed that the dominant positive phenotype was for CD34/CD45, indicating hematopoietic stem cells. In addition, the endothelial stem/progenitor cells were significantly detected as CD31/CD133 positive cells. CONCLUSION: According to our results and considering the safety and efficiency potential of each of the applied methods, the back-flushing in comparison with the other methods can be considered a suitable procedure for MNC isolation from LRFs.

14.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943898

RESUMO

In recent years, cell-based immunotherapies have demonstrated promising results in the treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have been most frequently applied in the treatment of hematological malignancies. Clinical challenges in their application primarily include cytokine release syndrome, neurological symptoms, severe inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells. As a consequence, there remains a significant medical need for more potent technology platforms leveraging cell-based approaches with enhanced safety profiles. A promising population that has been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells which belong to the innate arm of the immune system recognize and kill virally infected cells as well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells play an important role in the host's immune defense against cancer due to their specialized lytic mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as their immunoregulatory potential via cytokine/chemokine release. To develop and implement a highly effective CAR NK cell-based therapy with low side effects, the following three principles which are specifically addressed in this review have to be considered: unique target selection, well-designed CAR, and optimized gene delivery.


Assuntos
Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Animais , Eletroporação , Humanos , Microfluídica , Modelos Biológicos , Engenharia de Proteínas , Receptores de Antígenos Quiméricos/química
15.
J Cell Physiol ; 235(3): 2336-2349, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31517394

RESUMO

The senescence is proposed as a defense mechanism against many anticancer drugs. This complication is marked by differences in cell appearance and inner structures underlying the impairment in function. In this experiment, doxorubicin-induced senescence was assessed in mesenchymal stem cells (MSCs) isolated from the bone marrow of different-aged Balb/c mice (1, 8, and 16 months old). In addition, doxorubicin kinetics in culture medium were investigated to compare the drug absorption rate by different-aged MSCs. Several methods were exerted including Sandwich ELISA for NF-κB activation, propidium iodide staining for cell cycle analysis, Flow-fluorescent in-situ hybridization (Flow-FISH) assay for telomere length measurement, and specific staining for evaluation of ß-galactosidase. Determination of doxorubicin in a medium was performed by high-performance liquid chromatography technique. Following doxorubicin exposure, cells underwent substantial telomere shortening, cell cycle arresting in G2 phase, and increased ß-galactosidase activity. Interestingly, the enhanced level of NF-κB was observed in all age groups. The highest and lowest sensitivity to telomere shortening attributed to 1- and 8-month-old MSCs, respectively. In consistent with Flow-FISH results, the ß-galactosidase activity was higher in young-aged MSCs after treatment. Statistical analysis indicated a correlation between the reduction of telomere length and cessation in G2 phase. Regarding the obtained kinetics equations, the rate of doxorubicin absorption by all aged MSCs followed the same trend. In conclusion, the changing of some elements involved in doxorubicin-induced senescence can be affected by the age of the cells significantly in young MSCs than two other age groups. Hereupon, these changing patterns can open new insights to develop anticancer therapeutic strategies.


Assuntos
Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Animais , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Fase G2/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , beta-Galactosidase/metabolismo
16.
Iran J Pharm Res ; 17(2): 585-592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881416

RESUMO

Due to hygienic risks of mercury residues in food and marine originated supplements, measuring total mercury and methyl mercury contents of canned tuna as a highly consumable marine food product is essential. In this study, 40 canned Tuna fish (from Persian Gulf) were collected in 2015 and then flame atomic absorption spectrometer (FAAS) and thermo gas chromatography mass spectrophotometry were used to measure total mercury and methyl mercury, respectively. The results indicated that the average contents of total mercury and methyl mercury of the canned tunas, with 34.2 and 29.5 ppb decrements compared with 2009's measurement, were 177.4 and 143.7 ppb respectively. The highest concentration of the total mercury was 315.2 while it was 267.9 ppb for methyl mercury. This study showed that the content of the mercury in canned tunas of the Persian Gulf was less than the Maximum Residue Limit (MRL).

17.
Med J Islam Repub Iran ; 31: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29951399

RESUMO

Background: Doxorubicin, by aggregating in bone marrow, causes genotoxic effects, and thus reduces the repair ability of cells. The present study was conducted as an in vitro evaluation of age effects on the cytotoxicity induced by doxorubicin in mesenchymal stem cells (MSCs). Methods: The MSCs of female BALB/c mice aged 1, 8, and 16 months were separated, characterized, and subsequently evaluated in cellular growth media. After 24 hours, exposure of the MSCs of the 3 groups of mice to doxorubicin (25, 50, 100, 200, 400, 800, 1200 nM) and cytotoxicity were assessed, and the sublethal dose was determined using flow cytometry technique and lactate dehydrogenase (LDH) release assay. Results: The IC50 values determined by flow cytometry for the separated MSCs of 1 young, 8 middle- aged, and 16 old mice were and respectively. Interestingly, the results of these 2 methods in determining cytotoxicity were in agreement, and a concentration of approximately 25 nM was considered to be the shared sublethal dose for different ages. Conclusion: The results indicated that MSCs of middle-aged mice were more resistant to the toxic effects of the drug. Besides, MSCs separated from the old mice were the most sensitive to chemotherapy and its side effects such as disruptions of cell proliferation and viability. These disruptions can be ascribed to the alteration of function and physiological processes with age. Determining proper concentration of doxorubicin drug to destruct cancerous cells based on age and individual sensitivity can minimize the amount of toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...